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ABSTRACT
Background: Malaria infection is a multisystem pathology with various clinical complications in
both adults and children. The clinical manifestation originates in humans following the invasion of
erythrocytes by merozoites. Methods: The relevant information and data was collated from sci-
entific databases such as Google Scholar, Science Direct, PubMed, Mendeley, Springer Link, and
Medline using keywords such as `severe malaria infection', `pathophysiology of severe malaria',
`complications of severe malaria' and `erythrocyte impairment in severe malaria'. Results: Gener-
ally speaking, the pathophysiology of severe malaria infection encompasses a succession of stages
involving the metabolic products of the malaria parasites inclusive of hemoglobin digestion, dam-
aged erythrocytemembrane components, the actions of the pro- and anti-inflammatory cytokines,
and the cytoadherence of the malaria parasites to the vascular endothelium as well as sequestra-
tion and rosetting. Themajor complications connected with severemalaria infection include acute
respiratory distress syndrome, neurological disorders resulting from cerebral malaria, liver and kid-
ney dysfunction, anaemia and thrombocytopenia, and fatal placental malaria. Conclusion: The
effective management of severe malaria infection involves a proper diagnosis followed by the sub-
jection of the patient to suitable antimalarial treatment with the necessarymedications depending
on the various clinical manifestations of the infection.
Key words: Erythrocyte, malaria, parasite, Plasmodium

INTRODUCTION
Malaria is one of the more widespread health issues
worldwide1 caused by the obligate intra-erythrocytic
protozoa of the genus Plasmodium, of the following
species, specifically P. falciparum, P. vivax, P. ovale,
and P. malariae and in addition, recently P. knowlesi
infecting humans2. It is noteworthy to mention that
the most severe complications and deaths connected
with malaria are caused by the P. falciparum species.
Other species, namely P. malariae, P. vivax, and P.
ovale, rarely induce pernicious complications, debil-
itating relapses, or death3. The incidence of severe
malaria is about 2 million cases annually, with ap-
proximately 430,000 deaths in the same time period4.
A total of 435,000 deaths were reported as a result of
malaria globally in 2017, of which 80% of the deaths
occurred in Africa. Children under 5 years old are
most susceptible to the malaria infection, accounting
for 61% of the total deaths from malaria in 20175.
Malaria is an emergency pathologic condition that is
accompanied by a multisystem disorder with various
clinical complications in adults and children6–8.
Malaria is a life-threatening disease whose clinical
manifestation originates in humans following the in-
vasion of erythrocytes by merozoites. After the de-

velopment of the parasite within the erythrocyte, var-
ious waste substances, including the hemozoin pig-
ment and other toxins, accumulate in the infected ery-
throcyte. These substances are transferred into the
vascular system following the lysis of the infected ery-
throcyte alongside the discharge of the invasivemero-
zoites. There is also the activation of the macrophages
and other cells by hemozoin and other malaria par-
asite toxins. This eventually leads to the genera-
tion of cytokines and other soluble factors that play
a major role in the initiation of a fever and other
pathologies connected with severe malaria9. By im-
plication, the pathophysiology of severe malaria in-
fection encompasses a succession of stages involving
the metabolic products of the malaria parasites fol-
lowing hemoglobin digestion, damaged erythrocyte
membrane components, the actions of the pro- and
anti-inflammatory cytokines, and the cytoadherence
of the malaria parasites to the vascular endothelium
as well as sequestration and rosetting.
Most complications connected to P. falciparum in-
fections are induced by severe anemia or cerebral
malaria. However, varying clinical symptoms also oc-
cur based on the parasite species and the organ af-
fected10. Furthermore, the parasite and host-related
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factors play a major role in the origin and develop-
ment of severe malaria infections. Infected erythro-
cytes adhere to the vascular endothelium of various
organs, forming rosettes, thereby initiating vascular
damage and a host inflammatory/immune response.
The differing presentations of thrombocytopenia,
acute respiratory distress syndrome (ARDS), and re-
nal and hepatic impairment, including fatal placental
malaria, are other complications connected with se-
vere malaria infection10–13. The present review sum-
marizes the pathophysiology of severemalaria and the
varying complications connected with the disease.

METHODS
The relevant information and data was collated from
scientific databases such as Google Scholar, Science
Direct, PubMed, Mendeley, Springer Link, and Med-
line using keywords such as ‘severe malaria infection’,
‘pathophysiology of severe malaria’, ‘complications of
severe malaria’ and ‘erythrocyte impairment in severe
malaria’.

RESULTS
Scholarly publications from 1982 - 2020 were chosen
from the scientific search engines, resulting in a total
of 157 references that have been cited in this review
work.

Pathophysiological Processes Involved in
the Development of Severe Malaria
Physiological impairment induced by malaria para-
sites, especially P. falciparum, result in alterations
to the normal structure and function of the erythro-
cytes. This eventually initiates life-threatening com-
plications. In addition, non-falciparum infections
such as those by P. vivax and P. knowlesi are involved
in this pathology and they have been reported to cause
severe complications and death in individuals14–20.
Generally, the pathophysiological events involved are
as follows: When the malaria parasites have com-
pleted schizogony in the erythrocytes (usually within
24 - 72 hours), the lysis of the infected erythrocytes
occurs, leading to the discharge of the merozoite by-
products including the damaged erythrocyte mem-
brane components such as glycosylphosphatidylinos-
itol (GPI) and digested hemoglobin– hemozoin pig-
ment. These by-products, especially the GPI and
hemozoin, induce the macrophages and endothelial
cells to release cytokines and inflammatory mediators
like interleukins (IL), namely, IL-1, IL-6, IL-8, lym-
photoxin, interferon-γ (IFN-γ), nitric oxide, and su-
peroxide21,22. The cytokines and membrane prod-
ucts released during the process of erythrocyte lysis

have been reported to be accountable for most of the
complications that are connected with malaria, such
as a fever, headache, weakness, pain in the muscles
and joints, diarrhea, central nervous systemdisorders,
stomach discomfort, vomiting, a low blood platelet
level, blood clotting impairments, the suppression of
the immune system, etc. (Figure 1)23,24. Similarly,
the DNA of the Plasmodium species is a highly pro-
inflammatory agent that can initiate fever and the re-
lease of cytokines into the bloodstream. The DNA of
Plasmodium species internalized by hemozoin (which
is formed in the developmental stage of the parasite
in the erythrocytes) undergoes an intracellular inter-
action with Toll-like receptor-9. This elicits the liber-
ation of pro-inflammatory cytokines and the activa-
tion of the cyclooxygenase (COX)-2-mediated upreg-
ulation of prostaglandins biosynthesis responsible for
the initiation of a fever (Figure 2)25,26. Hemozoin has
also been reported to cause anemia by enhancing the
extermination of developing erythrocytes in the bone
marrow 27,28.

Role of Cytokines in Severe Malaria
Thecytokines as part of the pro-inflammatory cascade
such as IFN-γ , ILs, tumor necrosis factor (TNF) and
nitric oxide play a foremost role in initiating malaria
complications. However, the low plasma levels of cy-
tokines have been reported to ameliorate the virulence
of malaria parasites. The failure of the cellular down-
regulatory mechanisms in the early stages of the pro-
inflammatory cytokine response is responsible for the
impairment of the immune system, leading to vari-
ous connected disorders to severe malaria. Very high
cytokine levels have been reported to elicit the fol-
lowing pathophysiology, namely a reduction in the
utilization of mitochondrial oxygen, the stimulation
of lactate production, the induction of microvascular
obstruction, low oxygen levels enhanced by cytoad-
herence, the obstruction of blood circulation, dysery-
thropoietic and multifactorial anemia, the inhibition
of gluconeogenesis, low glucose levels andmyocardial
impairment. Additionally, elevated levels of cytokines
in the plasma enhance the pro-coagulation process
through the stimulation of the leukocytes or platelets,
in addition to endothelial injuries as well as vascu-
lar damage in the brain and lungs and the upregula-
tion of the cranial and placental vascular and inter-
cellular adhesion molecules (ICAMs) that results in
cerebral malaria and drastically affects placental func-
tions21,22,26,29–35. The equilibrium between pro- and
anti-inflammatory cytokines determines themanifes-
tation and severity of the malaria infection22,30,32.
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Figure 1: Sequence of events leading to severemalarial infection (Source 23).

Cytokine-mediated injury has also been reported to
be connected to the complications encountered in P.
vivax malaria. P. vivax is known to initiate a higher
inflammatory response than P. falciparum due to the
greater release of cytokines. P. vivax infections are
depicted by a lower pyrogenic threshold, meaning
that they induce a fever at lower parasitaemia lev-
els. The greater pyrogenicity of P. vivax has been at-
tributed to its structural differences in terms of glyco-
sylphosphatidylinositol and higher levels of Toll-like
receptor-9-stimulating motifs in its hemozoin pig-
ment18,36.

Cytoadherence and Sequestration
Cytoadherence refers to the efficiency of the parasites
to bind to the vascular endothelium10. Mature para-
sites in the asexual stage and the gametocytes can cling
to the vascular endotheliumof various organs, includ-
ing the heart, liver, lung, kidney, and brain, in addi-
tion to the placenta and subcutaneous adipose tissues
(Figure 3)11,12.
Sequestration refers to the process whereby infected
erythrocytes adhere to the endothelial cells of the cap-
illaries and venules, usually in the late stages of the

development of the parasite (trophozoites and sch-
izonts) (Figure 3)38. The sequestration of parasites
within the endothelial cells is, for the most part, the
pathological basis of severe malaria infection with
cerebral malaria inclusive of this39. Parasite seques-
tration induces local hypoxia through the obstruction
of normal blood circulation. Additionally, malaria
parasite sequestration stimulates the replication of the
parasite and the adhesion of parasitized erythrocytes
to the non-infected erythrocytes (a process known as
rosetting). Rosetting increases the rigidity of both the
normal and infected erythrocytes40. Consequently,
malaria parasite sequestration causes the localization
of tissue damage that is incurred by the parasite toxins
and the activation of the host immune response. This
can possibly initiate a focused inflammatorymediator
and functional tissue impairment.
Matured forms of the malaria parasites are mostly in-
volved in the sequestration process. This occurs about
20 hours after the erythrocyte invasion. New proteins
are synthesized by the parasite which are conveyed to
the parasitized erythrocytes’ surface, enhancing the
infected erythrocyte adhesiveness to the endothelium.
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Figure 2: Initiation of fever by the plasmodial DNA (Source:26).

There is the possibility of the malaria parasites re-
maining sequestered in the deepmicrovasculature for
24 hours during their 48-hour lifecycle. This enables
the malaria parasites to elude clearance by the spleen,
complicating diagnosis because they can no longer be
sighted in the peripheral blood10.
Certainmolecules that originate from the parasite and
ligands found on the human endothelium have been
reported to play a foremost role in the sequestration
process of P. falciparum. The major molecules identi-
fied to be responsible for this effect include the P. fal-
ciparum histidine-rich protein (PfHRP) and the P. fal-
ciparum erythrocyte membrane protein 1 (PfEMP1).
PfHRP initiates the generation of knobs (symmetric
membrane arrangement) on the infected erythrocyte
surface. At the same time, PfEMP1 pops out from
the knobs and contributes extensively to the seques-
tration and virulence of the parasite11,12. The adher-
ence of the parasite to the endothelium occurs in the
following order of events. The parasite first adheres
loosely to the endothelium, followed by rolling. The
parasite then strongly attaches itself to the adhesion
molecules of the endothelium (Figure 3). During this

process, the sequestration receptor designated as in-
tercellular adhesion molecule-1 (ICAM-1) functions
as the rolling receptor, while CD36 ensures stationary
and stable adherence under flow 41,42.
Sequestration also occurs in gestational malaria,
during which the parasite binds to the placenta.
PfEMP1, which is still the major adhesion recep-
tor, binds to the trophoblastic villous endothelium
via the chondroitin-4-sulfate and glycosaminoglycans
and probably hyaluronic acid (HA). Severe forms of
malaria may occur in pregnant women which may
lead to fetal death, particularly among women un-
dergoing their first pregnancy. This is because these
women have not developed enough of an immu-
nity against the chondroitin-4-sulfate binding para-
sites43–45.

Rosetting

Rosetting is a process that involves the cytoadherence
of the late stages of an infected erythrocyte to un-
infected/parasitized red blood cells (PRBCs) and/or
thrombocytes, leading to the formation of erythrocyte
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Figure 3: Cytoadherence, sequestration and resetting of P. falciparum infected erythrocytes (Modified
from37).

rosettes (Figure 3)46. PfEMP1 is the infected ery-
throcyte ligand that plays a major role in the gener-
ation of the rosette. Rosetting takes place through the
adhesion of the lectin-like DBL-domain of PfEMP1
present on the infected erythrocyte surface to the
complement receptor 1, CD31, and to the heparin
sulfate-like glycosaminoglycans of uninfected ery-
throcytes47–50. The rate of rosette formation in blood
GroupO erythrocytes is much less when compared to
blood groups A, B, and AB erythrocytes. Individuals
that possess blood group O erythrocytes may not suf-
fer from the severe form ofmalaria in this regard50,51.
Although P. falciparum, P. vivax, and P. ovale have
all been reported to be involved in the formation of
rosettes, only the rosettes formed by P. falciparum
have the capability to initiate severe malaria10,52.
The biomembrane lipid peroxidation product– 4-
hydroxynonenal (4-HNE) is probably transported
from the infected erythrocyte to the normal erythro-
cyte in rosettes, thereby enhancing the elimination of
the normal erythrocytes bymacrophages. This is pos-
sibly the cause of the high rate of loss of normal unin-
fected erythrocytes during severe malarial anemia53.

Rigidity and Deformability of the Erythro-
cyte Membrane
Distortion in the rigidity and deformability of the ery-
throcyte membrane plays a foremost role in the emer-

gence of severe malaria complications. In the pres-
ence of severe falciparum malaria, both the PRBCs
and non-PRBCs become rigid37,54,55. An increase
in the erythrocyte membrane rigidity and a decrease
in membrane deformability arises due to the oxida-
tive damage of the erythrocytemembrane engendered
by hemin, distortions in the membrane phospho-
lipid bilayer and the attached spectrin network, and
thermally driven membrane fluctuations caused by
pyrexia, including the blockage of the Na+/K+ pump
on erythrocytemembrane. This is caused by nitric ox-
ide22,55,56.
A decrease in erythrocyte membrane deformability
causes a rise in splenic clearance and a loss of erythro-
cytes, which leads to anemia. In as much as there is
a decrease in erythrocyte membrane deformability in
P. falciparum infection, there is an increase in ery-
throcyte membrane deformability in P. vivax infec-
tion. Although an increase in erythrocyte membrane
deformability may enable P. vivax infected erythro-
cytes to bypass the splenic sinusoidswithout being de-
stroyed, the increased fragility of the erythrocytes as a
result of the increased erythrocyte deformability can
also induce severe anemia in P. vivax malaria, as well
as inhibiting sequestration and enabling the free flow
of blood18,57.
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Complications Associated with Severe
Malaria Infection
The impairment of the erythrocyte physiochemistry
initiates the complications connectedwithmalaria in-
fection through the asexual forms of the malaria par-
asite. Malaria is a potentially multisystem disease
because the erythrocytes that are negatively affected
during the malaria infections are needed by all of
the organs in the body system32,58. Fever is a ma-
jor known symptom of malaria infection, although
the illness can advance into the severe malaria form.
Even though P. falciparum is the foremost initiator
of severe malaria, deleterious health effects and some
death cases have been reported to be connected with
non-falciparummalaria5.

Anaemia
Anemia has been labeled the highest cause ofmorbid-
ity and death in relation to themalaria infection, espe-
cially in children and pregnant women10,59. Malaria
anemia may occur in either an acute or chronic state.
The chronic form of malaria anemia is rampant in
holo-endemic areas. Acute malaria anemia emanates
from the lysis of the erythrocytes caused by increased
parasitemia or drug-induced/immune hemolysis60.
The pathophysiological events that result in malaria
anemia can be categorized into two groups: the
increased damage of PRBCs and non-PRBCs by
immune-mediated lysis, phagocytosis, and splenic se-
questration in addition to a reduced rate of erythro-
cyte formation as a result of dyserythropoietic and
secondly, the suppression of the bone marrow, the re-
duced formation of reticulocyte, the actions elicited
by inflammatory cytokines and other parasite fac-
tors. Furthermore, the reduction in hemoglobin level
in malaria patients is induced by co-infection with
bacteria, hookworm, and human immune-deficiency
virus-1 (HIV-1), poor nutrition, and reoccurring
malaria infections in holo-endemic countries59–61.
The major identified causes of malaria anemia are the
increased propensity of PRBCs to rupture and the
rapid splenic clearance of distorted PRBCs and non-
PRBCs. Non-PRBCs can be prematurely eliminated
from the blood by mechanisms involving the rigidity
of the membrane, phospholipid asymmetry, and de-
creased deformability, as previously described40. The
action of the spleen has been reported to be a contrib-
utory factor in severe malaria by virtue of its capacity
to remove PRBCs and non-PRBCs from the systemic
circulation excessively. Nevertheless, the spleen can
offer protection against severe cerebral malaria62,63.
Dyserythropoiesis is amajor contributor to the patho-
genesis of anemia. The phagocytosis of hemozoin by

the bone marrow macrophages is known to induce
dyserythropoiesis62. Additionally, the immune re-
sponse plays a principal role inmalaria anemia patho-
genesis. Themonocyte and lymphocyte responses are
known to be stimulated by PRBCs, malaria antigens,
and hemozoin. In addition, the pro-inflammatory
and anti-inflammatorymediators such as IFN-γ , IL-1,
IL-23, TNF-α , chemokines, and growth factors gen-
erated initiate anaemia60,64. The macrophage mi-
gration inhibiting factor (MIF) is another contribu-
tor to severe anemia in malaria infection due to the
MIF-induced suppression of bone marrow erythro-
poiesis65.
Pro-inflammatory cytokines are involved in the iron
delocalization pathway of anemia in severe malaria.
Ferroportin delocalization is activated by TNF-α .
Ferroportin is an essential protein that is found in
large amounts in the reticuloendothelial systemwhich
mediates the macrophage iron discharge and the ab-
sorption of iron in the intestine. Ferroportin delo-
calization promotes a reduction in iron absorption
and macrophage cell release66. Hepcidin is known
to stimulate the decreased level of ferroportin in the
reticuloendothelial system, and the level of hepcidin
is elevated in severe malaria anaemia67.
Micronutrient malnutrition, especially a lack of vita-
mins A and E, riboflavin, iron, folate, and zinc, has
been reported to escalate the complications connected
with anemia by disrupting the immune system and
iron metabolism dyserythropoiesis59.

Thrombocytopenia
Thrombocytopenia is a common disorder encoun-
tered in malaria infection, especially in the early stage
of the infection. It is induced by P. falciparum and
P. vivax 8,68–70. The occurrence is very prevalent in
children and adults. According to the study carried
out by Tan et al.71 in Thailand, lower platelet counts
were reported in pregnant women in comparison to
non-pregnant women. The pathogenetic features of
malaria thrombocytopenia are vast and may be re-
lated to coagulation impairments, splenomegaly and
damage to the platelets by macrophages, in addition
to the distortion of the bone marrow, oxidative stress,
and aggregation of platelets72. Low platelet count and
ahigh level of the vonWillebrand factorwere reported
in P. falciparum and P. vivax malaria-infected indi-
viduals in Indonesia. TheHigh vonWillebrand factor
is known to be related to platelet binding and therefore
can elicit thrombocytopenia73. Another study by de
Mast et al.68 indicated an elevation in the external do-
main of the platelet receptors for the von Willebrand
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factor (sGP1b) in the blood of individuals suffering
frommalaria, thereby inhibiting increased platelet ad-
hesion.

Malaria-associated Acute Respiratory Dis-
tress Syndrome (MA-ARDS)

Themost genuine complexities seen in intestinal sick-
ness are metabolic acidosis, pulmonary complica-
tions, placental malaria, cerebral malaria, and hemor-
rhages with serious anemia, all of which can prompt
ARDS74.
Tragically, there is relatively little epidemiological in-
formation on MA-ARDS75. It happens for the most
part in grown-ups with fast and helpless anticipation
with a lethality pace of 20 — 80%, even with anti-
malarial treatment76. Manifestations range fromgen-
tle respiratory inconveniences, for example, dyspnea
and a cough, to an advancement in ARDS75,76.
In MA-ARDS, most detailed cases are in a low trans-
mission zone or are experienced by non-insusceptible
voyagers77. ARDS is connected with intense irrita-
tion and damage to the alveolar endothelium and as-
piratory parenchyma, which subsequently causes dys-
functions and an expanded porosityof the pneumonic
alveolar-capillary hindrance. This promotes the de-
velopment of edema78. Diminished gas exchange and
expanded inflammatory mediators in the lungs bring
about respiratory distress in sick patients, prompting
death77–79.
The full intricacy of human MA-ARDS has provoked
the necessity to comprehend the physiopathology of
the malaria infection76. Accordingly, the murine
models have facilitated the understanding of the var-
ious intricacies of MA-ARDS pathogenesis, mainly
neutrophil inclusion and the levels of hypoxemia like
those seen in humans76,80,81.
The clinical manifestations identified withMA-ARDS
resemble those of ARDS caused by different illnesses
in addition to the malaria side effects depicted previ-
ously. It is expected to begin with less severe intri-
cacies, for example, a cough and dyspnea advancing
until the development of pneumonic edema75,82. Al-
though the MA-ARDS mechanisms are yet not well
established, previous research reports have shown the
significance of CD8+ T cells in murine MA-ARDS
and the activity of leukocytes integrin in the patho-
genesis of MA-ARDS83,84.
Nonetheless, there are two primary events that ex-
plain the pathogenesis of MA-ARDS. One is centered
on the fiery reaction of the host related to the cellular
dysfunction of the pneumonic microvasculature85,86

and the other is identified by the adhesion of the in-
fected erythrocytes to the endothelial cell of the pul-
monary endothelium that promotes the pathogenesis
of the infection87,88. In the lung tissue, the exudative
stage is in the beginning stage of the condition where
harm to the endothelial hindrance happens because of
endothelial cell necrosis, bringing about edema that
pours out into the alveoli. This causes the develop-
ment of a hyaline layer in the alveolar wall80. The
histological segments taken fromMA-ARDS patients
showed bountiful leukocytes, chiefly macrophages in
the tissue or alveolar spaces, and a lower number of
lymphocytes and neutrophils75,76. The proliferative
fibro stage happens in a later period and it is related
to fibroblast cell multiplication and collagen deposi-
tion76,80.
MA-ARDS is associated with the alveoli damage aris-
ing from endothelial and epithelial cells injuries, the
increment of vascular porousness, and the intercel-
lular spaces followed by edema. During the intra-
erythrocyte cycle, the parasite processes hemoglobin
to form a compound of the toxic heme group, hemo-
zoin. This prompts the delivery and initiation of pro-
inflammatory elements like chemokines, interferon-
γ (INF-γ), CXC-chemokine ligand-10 (CXCL10),
CC-chemokine ligand2 (CCL2), keratinocyte-derived
chemokine (CXCL1), TNF, IL-1β , IL-6, IL-8, IL-
10, transforming growth factor–β (TGF-β ) and
other inflammatory mediators, for example, heme
oxygenase–1 (HO-1)75,89,90.
In P. falciparum malaria, PRBCs exhibit a high
propensity to adhere to endothelial cells of several
organs microvasculature due to the expression of
PfEMP191. Proteins intervene in the attachment to
non-PRBCs and PRBCs to form rosettes that advance
the adhesion to few receptors like CD36, ICAM-
1, vascular adhesion molecule-1 (VCAM-1), chon-
droitin sulfate A (CSA)88, and the endothelial pro-
tein C receptor (EPCR)92 present in the endothe-
lial microvasculature of various tissues, for example,
cerebral, pneumonic and placental. This attachment
permits the parasite to complete its life cycle with-
out being wiped out by hemocatheresis. This exac-
erbates the severity of the disease88. Notwithstand-
ing, it isn’t clear which bond is particularly respon-
sible for the interface between the infected erythro-
cytes and pneumonic vascular endothelium in MA-
ARDS79,83,90. Recent research has demonstrated
that the development of neutrophil extracellular traps
(NETs) is potentially connected to the severity ofMA-
ARDS and the different intricacies of malaria infec-
tion93,94. Within the blood vessels, NETs shields the
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endothelial obstruction from the inflammatory com-
ponents, simultaneously actuating the complement
system, influencing hemostasis, designing scattered
intravascular coagulation eliciting hemorrhages and
thrombi formations, and, subsequently, ischemia94.
In vivo and in vitro experiments performed by Ser-
cundes et al., utilizingmurinemodels showed that the
treatment needed to restrain the NETs developments
resulted in a critical improvement in the MA-ARDS
pathology 93.

Neurological Complications (Cerebral
Malaria)
Amajor clinical manifestation, which in certain cases
leads to death in severe malaria among adults, is cere-
bral malaria. In the early stage, it is characterized typ-
ically by generalized convulsions or drowsiness and
confusion, eventually leading to a coma95. From an
experimental point of view, changes in the normal
mental status of an individual should be handled as
though it is cerebral malaria. Furthermore, delirium,
agitation, and transient paranoid psychosis can also
occur when the patient regains consciousness. Other
neurological sequelae different from cerebral malaria,
which can also happen in severe malaria, include cra-
nial nerve abnormalities, ataxia, and extrapyramidal
tremor2. About 10-50% of the total cerebral malaria
cases have been reported to lead to death, even when
under treatment96.
Mild stiffness of the neckmay occur in this case. Reti-
nal hemorrhages have been observed in about 15%
of the total cases investigated. Other common ma-
jor complications of this condition include fixed jaw
closure and tooth grinding (bruxism)5.
Nevertheless, varying disorders such as a dyscon-
jugate gaze, pouting, decerebrate and decorticate
rigidity, opisthotonus, vessel changes, plantar re-
flexes and deep jerks, and papilledema, anemia, hep-
atosplenomegaly, retinal whitening, and jaundicemay
possibly occur5,97,98.

Liver Pathology in Severe Malaria Infection
The liver is a principal organ that is required dur-
ing the hepatic phase of the life cycle of the malaria
parasite as it is where malaria sporozoites transform
into merozoites. The merozoites are delivered into
the systemic circulation and enter the erythrocytic
stage. In the erythrocytic stage, PRBCs become se-
questered in the small blood vessels. The debased
haemozoin color is then inundated by nearby tissue
macrophages like alveolar and macrophage Kupffer
cells. Histopathological observations of the liver in

P. falciparum malaria infection incorporate respon-
sive Kupffer cells, the maintenance of the haemozoin
color, and insignificant PRBC sequestration99,100.
An ultrastructural study showed there to be a relation-
ship between a high PRBCs load in the liver ofmalaria
patients with jaundice, hepatomegaly and liver en-
zyme elevation101.
Apoptotic changes occur in various cell systems and
include both pathological and physiological changes.
While the liver has not been reported to exhibit an
apoptotic change in human malaria, these changes
have been reported in animal models during the ery-
throcytic stage in hepatocytes and in the hepatic stage
of Kupffer cells102–104. The process of programmed
cell death can intercede in the presence of different
enhancers including hormones, growth factors, cy-
tokines, bacterial or viral diseases, and their resis-
tant reactions105. Cell apoptosis is regulated through
two significant pathways: the natural or mitochon-
drial pathway and the extraneous or death-receptor
pathway. Initiator caspases, for example, caspase-8
or -9, assumes a regulatory part by enacting down-
stream effector caspases, for example, due to caspase-
3, -6, or -7106. Nuclear factor-kappa B (NF-κB) has
been seen to manage the apoptotic program in differ-
ent cell types, either as an up-controlling reaction or
as an apoptosis blocker107. Proof of NF-κB direct-
ing apoptosis has been observed in the cerebrum en-
dothelial cells and intravascular lymphocytes in cere-
bral malaria108.
Likewise, hyperbilirubinemia (> 3 mg/dl) and raised
plasma transaminases are diagnostic of malarial hep-
atitis109. The adhesion of PRBCs to the endothe-
lial walls of the liver vessels prompts the blockage
of the intrahepatic ducts, engendering modifications
in the bloodstream and as a result, ischemia. In-
tricacies like hepatic encephalopathy, multi-organ
dysfunction, and impaired protein synthesis follow.
Histopathological studies have uncovered hepato-
cyte necrosis, cholestasis, granulomatous sores, and
malaria knobs in severe malaria infection110.
As per theWorld Health Organization (WHO) guide-
lines, indications of malarial hepatopathy are abnor-
mal in instances of severe malaria infection. Indi-
cations of liver dysfunction have been reported in
Asia, particularly in India. Themajority of these cases
are due to falciparum malaria or mixed (both falci-
parum and vivax) malaria111. Cases with adjusted
liver capacity tests and surprisingly fulminant hep-
atic dysfunction have been reported112,113. An inves-
tigation conducted on Nigerian children noted that
the elevated plasma levels of liver biomarkers are the
biochemical indicators of intense P. falciparum para-
sitaemia114.
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Kidney Pathology in Severe Malaria Infec-
tion
Malaria parasites were the main parasitic agents to
be plainly connected with glomerular infections in
tropical zones. Serious malaria can cause pathology
of the glomeruli, tubules, and interstitial locale115.
Kidney infection in malaria is principal because of
erythrocyte anomalies. PRBCs will, in general, cling
to the capillary endothelium, healthy erythrocytes,
and blood platelets, prompting the development of
rosettes and clusters, which hinders microcircula-
tion116. These pathological events are plausible con-
tributing factors to kidney injury as part of a relation-
ship with hemodynamic instability, including hypo-
volemia and shock. Endothelial interactions prompt
the release of a few cytokines, including thromboxane,
catecholamine, endothelin, and other inflammatory
mediators that are likewise ensnared in the patho-
genesis of malaria-related kidney injury. Invulnera-
ble system actuations in malaria can go through T-
cell helper type 1 (Th1) and T-cell helper type 2 (Th2)
responses. When the Th2 response prevails in the
malaria infection by P. malariae, complement actua-
tion prompts glomerulonephritis. Hemodynamic un-
steadiness occurs because extreme erythrocyte para-
sitism prompts intense tubular necrosis as observed
in P. falciparum infection. At the point when Th1
response prevails, intense interstitial nephritis and
intense glomerulonephritis can be observed. Cor-
tical necrosis has additionally been observed in se-
vere malaria infection, describing a more serious kid-
ney injury. For the most part, it is connected with
the non-recuperation of renal function, and therefore
the advancement of end-stage kidney failure117. A
few factors add to the event of these complications,
namely vasoconstriction, hypovolemia and hemol-
ysis (prompting hemoglobinuria), erythrocyte par-
asitemia, resistant edifices deposition in glomeruli,
microcirculation dysfunction (due to the cytoadher-
ence of parasitized erythrocytes), and rhabdomyolysis
(which isn’t normal in malaria). Another contribut-
ing factor to kidney failure in malaria is hepatic dys-
function with jaundice and hepatomegaly, through
which hyperbilirubinemia can prompt cast nephropa-
thy and acute kidney injury (AKI). Liver dysfunction
and its intricacies can likewise cause AKI (hepato-
renal disorder)118–121.
AKI accounts for Plasmodium species (P. falciparum,
P. vivax, P. malariae and P. ovale) infections and
the patient can deteriorate because of the low hydra-
tion and liquid loss brought about by pyrexia spew-
ing, perspiring, and parchedness. Histological exam-

inations have shown that glomerulonephritis, inter-
stitial nephritis, and acute tubular necrosis are evi-
dence of AKI. It is likewise conceivable to discover on-
going kidney dysfunction related to malaria, mostly
in the patients experiencing repeated cases of infec-
tion116,117,122,123.

Placenta Pathology in SevereMalaria Infec-
tion
Malaria in pregnancy is a significant worldwide pub-
lic health challenge. In 2018, the WHO reported 11
million pregnancies with a high malaria burden in
sub-Saharan Africa124. In endemic areas, the inci-
dence of placental malaria can reach up to 63% in
pregnant women, regardless of the malaria infection
symptomatology 125,126.
Likewise, malaria infection during pregnancy elicits
clinical symptoms such as anemia, aspiratory edema,
puerperal sepsis, cerebral malaria, hypoglycemia,
which can sometimes result in death. In addition,ma-
ternal malaria elicits the abortion of pregnancy, in-
trauterine growth retardation (IUGR), unexpected la-
bor, a low birth weight (LBW), etc.127
The WHO revealed in 2018 that there were 228 mil-
lion cases of maternal malaria, of which 93% of such
cases occurred in Africa, followed by Southeast Asia
(3.4%) and the EasternMediterranean Region (2.1%).
Theprevalence ofmaternalmalaria has been generally
steady since 2014 with 57 cases for each 1000 popula-
tion128.
Placental malaria appears to occur following the Plas-
modium evasion of the spleen. The Plasmodium binds
to the VAR2-CSA proteins that interact with CSA
in the placental intervillous space44,129. Placental
malaria is diagnostic of the presence of parasitized
erythrocytes in the intervillous space, invading the
maternalmonocytes/macrophages130. Noticeable in-
flammatory actions by the monocytes/macrophages
cause enormous, persistent inter-villositis character-
ized by serious placental malaria131. The inflam-
matory reactions in placental malaria restrain a vi-
tal mechanistic target of rapamycin (mTOR) signal-
ing132. In placental malaria, the autophagy-related
genes are downregulated, prompting autophagy dys-
regulation and in this way, hindered the trans-
placental amino acid transport133. Likewise, the
blockage of mTOR signaling as a result of placental
malaria prompts a diminished placental amino acid
uptake134. Recently, it was observed that placen-
tal malaria stimulated the placental expression of in-
flammasomes which were connected to placental dis-
charge and the development of IL-1β , a supportive in-
flammatory cytokine that engenders a reduced nutri-
ent transporter expression132.
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Elevations of pro-inflammatory cytokines, oxidative
stress, and apoptosis engender pathological alter-
ations in the placenta135,136. It has been shown
through histopathological alterations that placental
malaria exacerbates the danger of toxemia in preg-
nancy, particularly in primigravidae137. Histopatho-
logical alterations during placental malaria showed
the presence of hemozoin, perivillous fibrin deposi-
tion, syncytial hitch development, and decline in the
villous surface area138. These pathologic changes in
the placentamay restrict the exchange of nutrients be-
tween the mother and embryo, expanding the hazard
of limited fetal development and LBW infants139,140.
Placental malaria diminishes the abundance of me-
galin and disabled homolog 2 (Dab2) in syncytiotro-
phoblasts, which might be accompanied by LBW141.
In Papua, studies showed there to be a relationship
between diminished birth weight and placental mito-
chondrial DNA copy number142. The previous report
showed that malaria infection during early pregnancy
prompted the modification of the vascular structure
of the placenta, diminished transport villi volume,
and an increased diffusion distance and diffusion ves-
sel surface. This had an impact on both birth weight
and gestational length143. All things being equal,
Plasmodium infection inmid-pregnancy is connected
with an increased danger of preterm birth, conceiv-
ably because of the progressions in the dysregulation
of angiogenesis, metabolism and inflammation144.
Maternal HIV infection increases the severity of pla-
cental malaria by hindering antibody advancement
to the variant surface antigens expressed by malaria-
infected erythrocytes while also dysregulating cy-
tokine biosynthesis, and decreasing the defensive
IFN-γ reactions145. Reports show that the incidence
of malaria diminished in the setting of antiretrovi-
ral therapies, especially the administration of pro-
tease inhibitors125. Notwithstanding, a new ran-
domized controlled preliminary survey study of HIV-
positive pregnant women showed no decline in pla-
cental malaria in the presence of a protease inhibitor
which was in contrast with non-nucleoside reverse
transcriptase inhibitors146. Consequently, antiretro-
virals may not assume a defensive role in placental
malaria infection.
One investigation showed that infants conceived
with placental malaria had higher chances of clin-
ical malaria in their first year of life147. Another
survey showed that clinical malaria presents earlier
on in the life of infants conceived with placental
malaria compared to infants conceived without pla-
cental malaria148. A new report established that

there were significantly increased chances of the in-
cidence of clinical malaria in neonates conceived by
women with placental malaria149. However, a delib-
erate survey of 14 patients reported a lack of proof
when affirming the relationship between malaria in
pregnancy and malaria in the earliest stages. There
was no obvious proof of vertical transmission150,151

and the result of innate malaria is uncommon, mak-
ing the survey outcome inconclusive.
Placenta malaria is described using the sequestration
of P. falciparum-infected erythrocytes and invasion
of the intervillous spaces of the placenta. The pla-
centa becomes dark because of the deposition of the
malaria pigment-hemozoin. Theparasite densities are
a lot higher in the placenta compared with peripheral
blood152,153. The thickening of the placental base-
ment membrane, perivillous fibrinoid stores, and the
syncytial knotting results in an adjusted exchange sys-
tembetween themother and embryo. Thediminished
capacity of the placental to deliver nutrients to the fe-
tus causes IUGR 154,155.
Additionally, previous studies have shown that an
increased susceptibility to infections during preg-
nancy results in high parasitemia and a heavy inva-
sion of parasite-tainted RBCs in the placental vascula-
ture44,156,157. Besides, it has also been observed that
malaria infection is more profound in primigravidae
than multigravidae. This protection from malaria in-
fection in multigravidae is because of the improve-
ment of the placental parasite-explicit invulnerability
in subsequent pregnancies44,157.

CONCLUSIONS
The major complications connected with severe
malaria infection include ARDS, neurological disor-
ders resulting from cerebral malaria, liver and kid-
ney dysfunction, anemia and thrombocytopenia, and
fatal placental malaria. However, the effective man-
agement of severe malaria infection involves a proper
diagnosis followed by the subjection of the patient
to suitable antimalarial treatments with the necessary
medications depending on the various clinical mani-
festations of the infection.

ABBREVIATIONS
4-HNE: 4-Hydroxynonenal
AKI: Acute kidney injury
ARDS: Acute respiratory distress syndrome
CCL2: CC-chemokine ligand2
COX: Cyclooxygenase
CSA: Chondroitin sulfate A
CXCL1: Keratinocyte-derived chemokine
CXCL10: CXC-chemokine ligand-10
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Dab2: Disabled homolog 2
EPCR: Endothelial protein C receptor
GPI: Glycosylphosphatidylinositol
HA: Hyaluronic acid
HIV: Human immune-deficiency virus
HO-1: Heme oxygenase–1
ICAMs: Intercellular adhesion molecules
ICAM-1: Intercellular adhesion molecule-1
IL: Interleukin
IL-1β : Interleukin-1β
IFN-γ : Interferon-γ
IUGR: Intra-uterine growth retardation
LBW: Low birth weight
MA-ARDS: Malaria-associated acute respiratory dis-
tress syndrome
mTOR: Mechanistic target of rapamycin
MIF: Macrophage migration inhibiting factor
NF-κB: Nuclear factor-kappa B
NETs: Neutrophil extracellular traps
PfEMP1: Plasmodium falciparum erythrocyte mem-
brane protein 1
PfHRP: Plasmodium falciparum histidine-rich pro-
tein
PRBCs: Parasitized red blood cells
TGF-β : Transforming growth factor– β
Th1: T-cell helper type 1
Th2: T-cell helper type 2
TNF: Tumoral necrosis factor
VCAM-1: Vascular adhesion molecule-1
WHO: World Health Organization
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